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ABSTRACT
The Bloomberg Terminal is the leading source of information and
news in the finance industry. Through hundreds of functions that
provide access to a vast wealth of structured and semi-structured
data, the terminal is able to satisfy a wide range of information
needs. Users can find what they need by constructing queries, plot-
ting charts, creating alerts, and so on. Until recently, most queries
to the terminal were constructed through dedicated GUIs. For in-
stance, if users wanted to screen for technology companies that
met certain criteria, they would specify the criteria by filling out
a form via a sequence of interactions with GUI elements such as
drop-down lists, checkboxes, radio and toggle buttons, etc. To facil-
itate information retrieval in the terminal, we are equipping it with
the ability to understand and answer queries expressed in natural
language. The following are examples of questions that our systems
can already understand and answer:

• What are the top 10 Asian tech companies with eps at least 4?
• Find corporate bonds rated A or better and with coupon higher
than 7%.

• Show me news about oil from the Financial Times over the last
two months.

Our QA (question answering [1, 8]) systems map structurally com-
plex questions like the above to a logical meaning representation
which can then be translated to an executable query language (such
as SQL or SPARQL). At that point we can execute the queries against
a suitable back end, obtain the results, and present them to the users.

Adding a natural-language interface to a data repository intro-
duces usability challenges of its own, chief amongst them being this:
How can the user know what the system can and cannot under-
stand and answer (without needing to undergo extensive training)?
We can unpack this question into two separate parts:

(1) How can we convey the full range of the system’s abilities?
(2) How can we convey its limitations?

We use auto-complete [4] as a tool to help meet both challenges.
Specifically, the first question pertains to the general issue of

discoverability: We want at least some of the suggested comple-
tions to act as vehicles for discovering data and functionality of
which users may have not been previously aware. The second ques-
tion pertains to expectation management. Naturally, no QA system
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can attain perfect performance; limiting factors include represen-
tational shortcomings and various kinds of incompleteness of the
underlying data sources, as well as NLP technology limitations. We
want to stop generating completions as a signal indicating that we
are not able to understand and/or answer what is being typed.

At minimum, then, we want our AC (auto-complete) systems to
be both sound and complete. Soundness here means that if we do
provide a completion q′ for a given partial question (a question pre-
fix) q, then q′ is in fact both understandable (semantically parsable)
and answerable. This being a conditional statement, soundness
would be easy to achieve if we never provided any completions.
Completeness is the needed dual: If q can in fact be extended to
some semantically parsable and answerable question q′ that is a
suffix of q, then our AC system should provide completions for q.

These two properties are minimal desiderata because we want
the list of completions to attain a number of additional properties:

(1) The top completion should be predictive of the user’s in-
tended query. After all, saving keystrokes was and remains
the main objective of all auto-complete systems.

(2) The completion list should be diverse. For instance, if we are
dealing with a QA system for news and a user types the letter
i, then our completions should not be limited to companies
whose names start with an i (such as IBM); it should include
people (such as Icahn), sectors (such as insurance), countries
(Ireland), and so on. Diversity is key for discoverability.

(3) The completions should be propositional, which is to say
that they should have full propositional semantics: They
should be full clauses that map to true or false. For example,
considering the first sample question above, if the user typed
everything up to . . . companies with e, then . . . companies
with eps at least 4 is an acceptable propositional completion
but . . . companies with eps is not. The former is a complete
thought, so to speak, a query that can be run against a data
back end; the latter is not.

(4) The completions should be grammatical. While the QA sys-
tem may be able to understand queries formulated in a tele-
graphic style [5], we want to ensure that the completions
we provide are linguistically well-formed. By suggesting
well-formed questions we ensure that the meaning of the
completions is unambiguous to the user, and we encourage
users to move away from less expressive telegraphic queries
to more expressive natural language questions where appro-
priate for their information needs.

These are the most important constraints we need to satisfy, but
there are others, such as personalization and popularity [9]. The
former means that the history and profile of a user should have
an impact on the completions they receive. The latter means that
popular queries (posed by large numbers of other users) should
make for more likely completions.

SIRIP: Industry Days SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

1351

https://doi.org/10.1145/3209978.3210204


SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA Arkoudas and Yahya

Note that our criteria are markedly different from—and more
challenging than—those of more conventional AC systems in the
setting of more traditional keyword-based search [2, 7]. Those sys-
tems are based almost entirely on large logs of preexisting user
queries, so query popularity is the main driving factor that de-
termines what completions are generated, in tandem with some
degree of personalization. The existence of large query logs not
only shapes the problem, but also solves it to a large extent. With
such logs at hand, it is not particularly challenging to build efficient
prefix-based data structures and algorithms for selecting popular
queries that complete a given input.

By contrast, auto-complete in our setting is characterized by a
cold-start problem. We want to build and deploy the QA and AC
systems simultaneously, which means that we have to build both
from scratch and without any preexisting logs of user queries. This
problem has been explored for keyword querying [3, 6], but in the
setting of QA the presence of semantics combined with the above
constraints introduces new challenges. These problems become
more acute when we deal with infinite sets like numbers and dates,
which are particularly important in the financial domain.

As the IR community has seen increasing interest in QA and
chatbots, our adaption of AC to improve the usability of our QA
systems, and the concrete industrial-strength solutions and insights
we have developed, will be of wide interest. Our solutions rely on a
plethora of approaches. We touch on two approaches here and elab-
orate on these and others in our presentation. In the first, we exploit
our QA framework for parsing questions into a structured meaning
representation as a language generator in order to do on-the-fly
question generation for AC. The second approach exploits natural
language compositionality to mix and match completions from any
meager question logs we may have from internal annotators, or
shortly after a QA system is deployed, thereby multiplying their ef-
fective size and coverage several-fold. In both cases semantics plays
a key role across the board, from enabling smart deduping (based on
meaning rather than surface form) to ensuring diversity. We make
use of various machine learning models, statistics, and metadata
to ensure morphological, grammatic, and semantic coherence of
completion suffixes with the typed prefixes, as well as the diversity
of the completion lists. Finally, we ensure that our top-level AC
component meets stringent performance requirements: Comple-
tions must be generated with each new keystroke and typically
in no more than 60 to 80 milliseconds (including time for spelling
correction).
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