
Knowledge�estions from Knowledge Graphs
Dominic Seyler

University of Illinois at
Urbana-Champaign

dseyler2@illinois.edu

Mohamed Yahya
Bloomberg LP, London

myahya6@bloomberg.net

Klaus Berberich
Max Planck Institute for Informatics

HTW Saar
kberberi@mpi-inf.mpg.de

ABSTRACT
We address the problem of automatically generating quiz-style
knowledge questions from a knowledge graph such as DBpedia.
�estions of this kind have ample applications, for instance, to edu-
cate users about or to evaluate their knowledge in a speci�c domain.
To solve the problem, we propose a novel end-to-end approach. �e
approach �rst selects a named entity from the knowledge graph
as an answer. It then generates a structured triple-pa�ern query,
which yields the answer as its sole result. If a multiple-choice ques-
tion is desired, the approach selects alternative answer options as
distractors. Finally, our approach uses a template-based method to
verbalize the structured query and yield a natural language question.
A key challenge is estimating how di�cult the generated question
is to human users. To do this, we make use of historical data from
the Jeopardy! quiz show and a semantically annotated Web-scale
document collection, engineer suitable features, and train a logis-
tic regression classi�er to predict question di�culty. Experiments
demonstrate the viability of our overall approach.

1 INTRODUCTION
In this work, we address the problem of generating quiz-style knowl-
edge questions from knowledge graphs (KGs). As shown in Figure 1,
starting from a KG and a topic such as US Presidents, we generate a
quiz question whose unique answer is an entity from that topic. �e
question starts its life as an automatically generated triple-pa�ern
query, which our system verbalizes. Each generated question is
adorned with a di�culty level, providing an estimate for how hard
it is to answer, and optionally a set of distractors, which can be
listed alongside the correct answer to obtain a multiple-choice ques-
tion. Our system is able to judge the impact of distractors on the
di�culty of the resulting multiple-choice question.

Applications of automatically generated knowledge questions
include education and evaluation. One way to educate users about
a speci�c domain (e.g., Politics) is to prompt them with questions,
so that they pick up facts as they try to answer – reminiscent of
�ash cards used by pupils. When quali�cation for a task needs to
be ensured, such as knowledge about a speci�c domain, automati-
cally generated knowledge questions can serve as a quali�cation
test. Crowdsourcing is one concrete use case as outlined in [35].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ICTIR ’17, October 1–4, 2017, Amsterdam, �e Netherlands
© 2017 ACM. ISBN 978-1-4503-4490-6/17/10. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3121050.3121073

BarackObamaGrammyAward

lawyer president

typetype

personentity

award

isAisAisA
isA

won

type

Honolulu

bornIn

city
typeisA

?x president
type

Honolulu
bornIn

?x president
type

GrammyAward
won

BillClinton

type

Q1

Q2

Illinois
state

Illinois

state

TUS Presidents = {BarackObama, RonaldRegan, ...}

BarackObamaGrammyAward

lawyer president

typetype

personentity

award

isAisAisA
isA

won

type

Honolulu

bornIn

city
typeisA

?x president
type

Honolulu
bornIn

?x president
type

GrammyAward
won

BillClinton

type

Q1

Q2

Illinois
state

Illinois

state

“Which president from Illinois won a Grammy?”

di� (Q1, BarackObama) = hard

disthardQ1
= RonaldRegan disteasyQ1

= HarryTruman

Figure 1: A KG fragment, a topic, a hard question, and two
distractors (one easy and one hard).

Likewise, knowledge questions can serve as a form of CAPTCHA
to exclude likely bots.

Challenges. To discriminate how much people know about a
domain it is typical to ask progressively more di�cult questions.
In our se�ing, this means that we need to automatically quantify
the di�culty of a question. �is is not trivial as it requires us to
consider multiple signals and their interaction. One might consider
all questions whose answer is BarackObama to be easy, as he is a
prominent entity. However, few people would know that he won
a GrammyAward. �erefore, signals that predict question di�culty
need to be identi�ed and combined in a meaningful manner.

An answer should be easy to verify automatically and disputes
about the correctness of an answer should be minimal. We envision
a se�ing with minimal human involvement, which we achieve by
ensuring that each question has exactly one correct answer. We
deal with possible variation in user input (e.g., ‘Barack Obama’
vs ‘Barack H. Obama’) by turning �ll-in-the-blank questions into
multiple-choice questions. Here, we carefully consider the impact
distractors have on question di�culty.

A �nal challenge is the production of well-formed questions that
look natural. Such questions provide a be�er experience to users
and make them hard to identify as having been automatically gen-
erated. Two important factors here are question coherence and lin-
guistic variety. For example, while a KG may classify BarackObama
as an entity and a formerSenator, we use the la�er in asking
about him, as the �rst is unnatural. Similarly, while a relation of an
actor to a movie is called actedIn, we want to vary it’s expression
(e.g., ‘acted in’ or ‘starred in’).

Paper Session 1: Entities and Knowledge Bases ICTIR’17, October 1–4, 2017, Amsterdam, The Netherlands

11

Query
Generation

Difficulty
Estimation

Query
Verbalization

Distractor
Generation

T Q MCQ

Figure 2: �estion generation pipeline.
Contributions. We propose a novel end-to-end approach for

generating quiz-style knowledge questions from knowledge graphs.
Our approach has three major components: query generation, dif-
�culty estimation, and query verbalization. In a se�ing where
multiple-choice questions are desired, a fourth component can gen-
erate distractors and quantify their impact on question di�culty.
Figure 2 depicts our pipeline.

�e query generation component generates a structured query
that will serve as the basis of the �nal question shown to a human.
By starting from a structured query, we are able to generate ques-
tions that are certain to have one unique, correct answer in our
KG. We discuss challenges that need to be addressed so that the
resulting cues are meaningful.

To estimate the di�culty of a question we leverage di�erent
signals about named entities, which we derive from a Web-scale
document collection annotated with named entities from the KG.
We use these signals as features to train a di�culty classi�er with
supervision obtained from more than thirty years of data from the
Jeopardy! quiz show.

Since our questions start their life as structured queries over the
KG, we verbalize them to generate a corresponding natural lan-
guage question. Following earlier work, we adopt a template-based
approach. However, we extend this approach with automatically
mined paraphrases for relations and classes in the KG, ensuring
diversity in the resulting natural language questions.

Outline. �e rest of this paper unfolds as follows. Section 2
introduces preliminaries and provides a formal problem statement.
Section 3 describes how a SPARQL query can be generated that
has a unique answer in the KG. Our approach for estimating the
di�culty of the generated query is presented in Section 4. Section 5
describes how the query can be verbalized into natural language.
Extensions for multiple-choice questions are described in Section 6.
Section 7 lays out the setup and results of our experiments. We
put our work in the context of prior research in Section 8, before
concluding in Section 9.

2 PRELIMINARIES & PROBLEM STATEMENT
Knowledge Graphs (KGs) such as as Freebase [9] and Yago [38]
describe entities E (e.g., BarackObama) by connecting them to other
entities, types T — also called classes (e.g., president, leader),
and literals L (e.g., ‘1985-02-05’) using predicates P (e.g., bornIn,
birthdate, type). A KG is thus a set of facts (or triples), { f | f ∈
E ∪ T × P × E ∪ T ∪ L}. A triple can also be seen as an instance
of a binary predicate, with the �rst argument called subject and
the second called object, hence the model is referred to as subject-
predicate-object (SPO) model. Figure 1 shows a KG fragment.

Pa�ern matching is used to query a KG. Given a set of variables
V that are always pre�xed with a question mark (e.g., ?x), a triple-
pa�ern-query is a set of triple pa�ernsQ = {q | q ∈ V ∪E ∪T ×V ∪

P ×V ∪ E ∪T ∪ L}. An answer a to a query is a total mapping of
variables to items in the KG such that the application of a to each q
results in a fact in the KG. In our se�ing, inspired by Jeopardy!, we
restrict ourselves to queries having a single variable for which a
unique answer exists in the KG.

We use Yago2s [39] as our reference KG, which contains 2.6M
entities, 300K types organized into a type hierarchy, and more than
100 predicates that form over 48M facts. Yago entities are associated
with Wikipedia entries, whereas Yago types correspond to WordNet
synsets [13] or Wikipedia categories. For estimating question di�-
culty, we utilize the ClueWeb09/12 document collections and the
FACC annotations provided by Google [16]. �e la�er provide se-
mantic annotations of disambiguated named entities from Freebase,
which we map to Yago2s via their Wikipedia article.

Jeopardy! is a popular U.S. TV quiz show that features ques-
tions referred to as clues. Each clue comes with a monetary value,
corresponding to the amount added to a contestant’s balance when
answering correctly. We reckon that monetary values correlate with
human performance and thus question di�culty – a hypothesis
which we investigate in Section 4.

Problem Statement. Put formally, our objective is to automati-
cally generate a question Q whose unique answer is an entity e ∈ T
which can be supported by facts in the KG. T is a thematic set
of entities called a topic, which allows us to control the domain
from which knowledge questions are generated (e.g., American
Politics). Moreover, we assume a prede�ned set of di�culty levels
D = {d1, ...,dn } with a strict total order < de�ned over its elements,
and we want to estimate the di�culty of providing the answer a to
Q, denoted di� (Q,a). An extension of the above problem which
we also deal with in this work is the generation of multiple choice
questions (MCQs), where the task is to extend a question Q into an
MCQ by generating a set of incorrect answers, called distractors,
and quantifying their di�culty.

In our concrete instantiation of the above problem, we use Wiki-
pedia categories as topics and Yago2s as our KG. As a �rst a�empt to
address the above problem, we consider a se�ing with two di�culty
levels, D = {easy,hard }, where easy < hard . For our purposes, a
question is any natural language sentence that requires an answer.
It can be an interrogative sentence, or a declarative one in the style
of Jeopardy! clues.

Generality. All methods and tools proposed in this work are
general enough to apply to a se�ing other than ours of Jeopardy!
and Yago. Our approach can be applied to any KG that is rep-
resented as triples and abides by the standards described earlier
in this section. In addition, lexical knowledge is required in the
form of surface forms for entities (e.g., BarackObama → “Barack
Obama”) and relations (e.g., actedIn→ “starred in”). For di�culty
estimation, our approach requires a question-answer corpus with
annotated di�culties. Statistics are required about salience of enti-
ties and coherence of entity pairs, which can be estimated using
external corpora like Wikipedia.

3 QUERY GENERATION
�e �rst stage is the generation of a query that has a unique answer
in the KG. �is query serves as the basis for generating a question
that will be shown to human contestants. �e unique answer needs

Paper Session 1: Entities and Knowledge Bases ICTIR’17, October 1–4, 2017, Amsterdam, The Netherlands

12

to be provided by the user in order to correctly answer the question.
Ensuring that a question has a single answer simpli�es veri�cation.

�e input to the query generation step is a topic T (e.g., US
Presidents). �e unique answer to the generated query will be an
entity e ∈ T randomly drawn from the KG (e.g., BarackObama).
A�er drawing e , a subset of triple pa�erns is selected from the KG
where e is either subject or object in the pa�ern. �ese triples form
the question’s content.

�e selection of triple pa�erns is guided by the following desider-
ata: i) the query should contain at least one type triple pa�ern,
which is crucial when verbalizing the query to generate a question,
and ii) entities mentioned in the query should not give any obvi-
ous clues about the answer entity. In what follows we present the
challenges in achieving each of these desiderata, and our solutions
to these challenges.

3.1 Answer Type Selection
�estions asking for entities always require a type that is either
speci�ed implicitly (e.g., ‘who’ for person) or explicitly (e.g., “Which
president . . . ”). KGs tend to contain a large number of types and
typically associate an entity with multiple types. Some of these
types usually appear in text talking about an entity (e.g., president,
lawyer). Other types, however, are artifacts of a�empts to have
an ontologically complete and formally sound type system. Such
types are meaningful only in the context of a type system, but not
on their own (e.g., the type entity).

To address the problem of selecting a type for an answer entity,
we use our entity-annotated corpus to capture the salience of a
semantic type t for an entity e , denoted s (t , e). We start by collect-
ing occurrences of an entity e along with textual types to which it
belongs ttext in our entity-annotated corpus. We use the following
pa�erns, inspired by Hearst [19], to collect (ttext , e) pairs:

P1: ENTITY (‘is a’ |‘is an’ |‘, a’ |‘and other’ |‘or other’) TYPE
“BarackObama and other presidents a�ended the ceremony.”
P2: TYPE (‘like’ |‘such as’ |‘including’ |‘especially’ |) ENTITY
“…several a�orneys including BarackObama”

�e next step is to disambiguate (ttext , e) pairs to (t , e) pairs — note
that entities are already disambiguated in the corpus, so we only
need to disambiguate ttext to a semantic type t in the KG. Relying
on the fact that our semantic types are WordNet synsets, we use the
WordNet lexicon (e.g., {lawyer, a�orney} → lawyer) for generating
a set of semantic type candidates for a given textual type. We then
use a heuristic where a textual type ttext paired with an entity e is
disambiguated to a semantic type t if i) t is in the set of candidates
for ttext and ii) e ∈ t . We compute salience s (t , e) as the relative
frequency with which the disambiguated (t , e) pair was observed
in our corpus. To select a type for the answer entity e , we draw one
of its types randomly based on s (t , e).

3.2 Triple Pattern Generation
We now have an answer entity e and one of its semantic types t
that will be used to refer to e in the question. We now need to
create a query whose unique answer over the KG is e . Creating a
query means selecting facts where e is either the subject or object

and turning these into triple pa�erns by replacing e with a variable
(?x). Not all facts can be used here, as some reveal too much about
the answer and render the question too trivial. Other facts will be
redundant given the facts already used.

Elimination of Textual Overlap with the Answer. �e �rst
restriction we impose on a fact is that the surface forms of entities
that appear in it cannot have any textual overlap with surface forms
of the answer entity. �e question “Which president is married to
Michelle Obama?” reveals too much about the answer entity. For
overlap, we look at the set of words in the surface forms, excluding
common stop words.

Elimination of Redundant Facts. Given a set of facts that
has been chosen, a new fact does not always add new information.
Keeping this redundant fact in a query will allow humans to clearly
identify a question as being automatically generated. To eliminate
this issue, we check each new type fact against all existing ones. If
the new type is a supertype (e.g., person) of an existing one (e.g.,
president), we discard it.

4 DIFFICULTY ESTIMATION
We now describe our approach to estimating the di�culty of an-
swering the knowledge query generated in Section 3. �ere are
several, seemingly contradictory, signals that a�ect the di�culty
of a question. As discussed earlier, one might expect any question
asking for a popular entity such as BarackObama to be an easy one.
However, if we were to ask “Which president from Illinois won a
Grammy Award?”, few people are likely to think of BarackObama.
We use a classi�cation model trained on a corpus of questions paired
with their di�culties to predict question di�culty. Note that the
di�culty is computed based on the query and not its verbalization.
Our goal here is to create questions that measure factual knowledge
rather than linguistic ability.

Since we rely on supervised training for di�culty estimation,
we make the natural assumption that di�culty labels in the ‘train-
ing’ and ‘testing’ questions are drawn from the same underlying
distribution for some target audience. We also assume that for this
population, it is possible to capture the di�culty of a question. As
evidence for this, in the Jeopardy! dataset [1] we �nd a positive
correlation between the a�empted questions for a certain di�culty-
level and the number of times a question of this di�culty-level
could not be answered. For the �ve di�culty-levels ($200, $400,
$600, $800, $1000), 4.46%, 8.35%, 12.69%, 17.82% and 25.69% of the
questions could not be answered, respectively.

4.1 Preparing Training Data
We use the Jeopardy! quiz-game show data described in Section 2 for
training and testing our di�culty-estimation classi�er. �e larger
goal is to estimate the di�culty of answering queries generated
from a knowledge graph, so we restrict ourselves to a subset of the
Jeopardy! questions answerable from Yago [38], which we collected
as described below.

We say a question is answerable from Yago if i) all entities men-
tioned in the question and its answer are in Yago, and ii) all relations
connecting these entities are captured by Yago. To �nd these ques-
tions, we automatically annotate Jeopardy! questions with Yago

Paper Session 1: Entities and Knowledge Bases ICTIR’17, October 1–4, 2017, Amsterdam, The Netherlands

13

entities using the AIDA tool for named entity disambiguation [21].
An example of a disambiguated question is:

ShahJahan built this complex in Agra to immortalize MumtazMahal,
his favorite wife. TajMahal

We retain an entity-annotated question if i) its answer can be
mapped to a Yago entity, ii) its body has at least one entity (the one
that will be given in the question, not the answer), and iii) consid-
ering all entities in the question and the answer entity, each entity
can be paired with another entity to which it has a direct relation
in Yago. �e last condition ensures that we have questions that
can be captured by the relationships in Yago. However, it does not
identify this relation, and such a match may be spurious. Since this
is hard to establish automatically, we invoke humans at this point.

We run a crowdsourcing task on the questions that survive the
above automated annotation and �ltering procedure. �e task is to
label a question/answer pair as Good if i) all entities in the question
have been captured and disambiguated correctly, ii) the question
can be captured by relations in Yago, and iii) the answer is a unique
one. �e crowdsourcing task ran until we obtained a total of 500
questions that we use in our experiments.

4.2 Di�culty Classi�er
A�er obtaining the training/testing data, we turn our a�ention
to building the di�culty classi�er and its features. Formally, our
goal is to learn a function di� (Q, e) ∈ {easy,hard } that estimates
the di�culty of providing the answer e to the query Q . We use
logistic regression due to the ease with which it can be trained
and because it allows easy inspection of feature weights, which
proved helpful during development. As we are dealing with a binary
classi�cation case (easy,hard), we train our model to learn the
probability of the question being an easy one, P (di� (Q, e) = easy),
and set a decision boundary at 0.5. We judge a question to be easy
if P (di� (Q, e) = easy) > 0.5 and hard otherwise.

�e model, however, only works if provided with the right fea-
tures. Table 1 provides a summary of our features. �e key ingredi-
ents in our feature repertoire are:

Entity Salience (ϕ) is a normalized score that is used as a proxy
for an entity’s popularity. As our entities come from Wikipedia,
we use the Wikipedia link structure to compute entity salience
as the relative frequency with which the Wikipedia entry for an
entity is linked to from all other entries. We also consider salience
on a per-coarse-semantic-type basis. �e second group of Table 1
de�nes a set of templates. We consider the coarse semantic types
person, location, and organization and de�ne a fourth coarse
semantic type other that collects entities not in any of the three
aforementioned coarse types (e.g., movies, inventions). Having
specialized features for individual coarse-grained types allows us
to take into account some particularities of these coarse types. For
example, locations tend to have disproportionately high salience.
By having a feature that accounts for this speci�c semantic type,
we can mitigate this. Without this feature, a location in a question
would always result in our classi�er labeling the question as easy.

Coherence of entity pairs (φ) captures the relative tendency of
two entities to appear in the same context. �is feature essentially
informs us about how much the presence of one entity indicates the

Table 1: Di�culty estimator features and their description.
T is one of person, organization, location, or other.

Feature Description
Entity Salience
ϕtarдet answer entity salience
ϕmin min. salience of question entities
ϕmax max. salience of question entities
ϕΣ sum over salience of entities
ϕµ mean salience of question and answer entities
ϕqµ mean salience of entities in question
Per-coarse-semantic-type Salience
ϕTmin min. salience of entities of type T
ϕTmax max salience of entities of type T
ϕTΣ sum over salience of entities of type T
ϕTµ mean salience of entities of type T
Coherence
φmin maximum pairwise coherence of all entity pairs
φΣ sum over coherence of all entity pairs
φµ average coherence of all entity pairs
φQTAµ average coherence of entity pairs that involve answer
Answer Type
IT binary indicator: answer entity is of type T

presence of the other entity. For example, we would expect a ques-
tion asking for BarackObama using the WhiteHouse in the question
to be easier than one asking for him using GrammyAward. Intuitively,
coherence counteracts the e�ect of salience. Since BarackObama
is a salient entity, we would expect questions asking for him to
be relatively easy. However, asking for him using GrammyAward is
likely to make the question di�cult, as people are unlikely to make
a connection between the two entities.

We capture coherence using Wikipedia’s link structure. Given
two entities e1 and e2, we de�ne their coherence as the Jaccard co-
e�cient of the sets of Wikipedia entries that link to their respective
entries in Wikipedia. �e intuition here is that any overlap corre-
sponds to a mention of the relation between these two entities. For
the above measures, we take their maximum, minimum, average,
and sum over the question as features as detailed in Table 1.

5 QUERY VERBALIZATION
We now turn to the problem of query verbalization, whereby we
transform a query constructed in Section 3 into a natural language
question. A human can digest this question without the technical
expertise required to understand a query. Our questions test factual
knowledge as opposed to linguistic ability. �e way a question is
formulated is not a factor in predicting its di�culty. �is guides our
approach to query verbalization, which ensures uniformity in how
questions are phrased. Our �nal goal is to construct well-formed
questions that are easy to understand.

We rely on a hand cra�ed verbalization template and automati-
cally generated lexicons for transforming a query into a question.
�e verbalization template speci�es where the di�erent compo-
nents of the query appear in the question. �e lexicon serves as a
bridge between knowledge graph entries and natural language.

Paper Session 1: Entities and Knowledge Bases ICTIR’17, October 1–4, 2017, Amsterdam, The Netherlands

14

Input: �ery, Q = {q1, ...,qn }

Qtype := {qi ∈ Q | has the predicate type} = {qt1 , . . . ,qtm }
Qinstance := Q \Qtype = {qi1 , . . . ,qil }

Which verbalize(qt1), . . . , and verbalize(qtm)
verbalize(qi1), . . . , and verbalize(qil) ?

Figure 3: Verbalization Template

5.1 Verbalization Template
Our approach to verbalizing queries is based on templates. Such ap-
proaches are standard in the natural language generation literature
[22, 30]. We adopt a template suitable for a quiz game show given
in Figure 3. Most of the work is done in the function verbalize.

�e function verbalize takes a triple pa�ern and produces its
verbalization. How this verbalization is performed depends on the
nature of the triple pa�ern. More concretely, there are three distinct
pa�erns possible in our se�ing (see Section 3):
• Type: if the predicate is type, then this results in verbalizing

the object, which is a semantic type.
• PO: where the triple pa�ern is of form (?var p o) and p is not
type.

• SP: where the triple pa�ern is of form (s p ?var) and p is not
type.

By considering these cases individually we ensure that linguistically
well-formed verbalizations are created.

5.2 Verbalization Lexicons
Semantic items in the knowledge graph are simply identi�ers that
are not meant for direct human consumption. It is therefore impor-
tant that we map each semantic item to phrases that can be used to
represent it in a natural language string such as a question.

Entities. To verbalize entities we follow the approach of Ho�art
et al. [21] and rely on the fact that our entities come from Wikipedia.
We resort to Wikipedia for extracting surface forms of our entities.
For each entity e , we collect the surface forms of all links to e’s
Wikipedia entry. We consider this text to be a possible verbalization
of e . �e above process extracts many spurious verbalizations
of an entity e . To overcome this issue, we associate with each
candidate verbalization the number of times it was used to link to
e’s Wikipedia entry and restrict ourselves to the �ve most frequent
ones, which we add to the lexicon for the entry corresponding to e .

Predicates. Predicate verbalization depends on the pa�ern
in which it is observed (SP or PO). We rely on our large entity-
annotated corpus described in Section 2 for mining predicate ver-
balizations sensitive to the SP and PO pa�erns. For each triple
(e1 p e2) ∈ KG, we collect all sentences in our corpus that match
the pa�erns PatSP =“e1 w1…wn e2” (e.g., “BarackObama was born
in Hawaii”) and PatPO =“e2 w1…wn e1” (e.g., “Hawaii is the birth-
place of BarackOmaba”) . Following the distant supervision as-
sumption [27], we hypothesize that ‘w1...wn ’ is expressing p. �e
above hypothesis does not always hold. To �lter out possible noise
we resort to a combination of heuristic �ltering and scoring. We
remove from the above verbalization candidate set any phrases
that are longer than 50 characters or contain a third entity e3. We
subsequently score how good of a �t a phrase ‘w1...wn ’ is for a

predicate p using normalized pointwise mutual information (npmi).
For each predicate p, we retain the 5 highest scoring verbalizations
for each of the two pa�erns, PatSP and PatPO , which are used for
verbalizing SP and PO triple pa�erns, respectively.

Types. As explained in Section 2, our types are WordNet synsets.
We therefore rely on the lexicon distributed as part of WordNet
for type paraphrasing. Each of the three lexicons provides sev-
eral ways to verbalize a semantic item. We verbalize a semantic
item by choosing a verbalization uniformly at random from the
corresponding lexicon to ensure variety.

6 MULTIPLE-CHOICE QUESTIONS
�e �nal component in our question generation framework turns a
question into a multiple-choice question (MCQ). �is has several
advantages: in general, it is easier to administer a MCQ as the
problem of answer veri�cation can be completely mechanized. In
general, where knowledge questions are involved (as opposed to
free response questions that might involve opinion), the use of
MCQs is widespread as observed in such tests as the GRE.

To turn a question into an MCQ we need distractors: entities
presented to the user as candidate answers, but are in fact incorrect
answers. Of course, not all entities constitute reasonable distractors.
Distractors should ideally be related to the correct answer entity
and it should generally be possible to confuse a distractor with the
correct answer. We call this the confusability of a distractor. �e
more confusable a distractor is with the correct answer, the more
likely a test taker is to choose it as an answer, making the MCQ
more challenging.
6.1 Distractor Generation
Our starting point for generating distractors is the query Q =
{q1, ...,qn } generated in Section 3, which formed the basis of the
question verbalized in Section 5. By starting with a query, we have
a fairly simple but powerful scheme for generating distractors. By
removing one or more triple pa�erns from Q we obtain a query
Q ′ ⊂ Q that has more than one answer entity. All but one of these
entities are an incorrect answer to Q .

�e relaxation scheme described above can generate a large
number of candidate distractors. However, not all relaxations stay
close to the original query. If a relaxation deviates too much from
Q , the obtained distractors become meaningless. We address this
by imposing two restrictions on relaxed queries: (i) a semantic type
restriction, and (ii) a relaxation distance restriction.

Semantic type restriction ensures that the answer and distractor
are type-compatible. For example, an MCQ asking for a location
should not have a person as one of its distractors. �e semantic type
restriction requires that a semantic type triple pa�ern is relaxed to
the corresponding coarse type.

�e relaxation distance restriction refers to relaxations involving
instance triple pa�erns (as opposed to triple pa�erns specifying
type constraints). We de�ne the distance between a query Q and a
query Q ′ ⊆ Q as follows:

dist (Q,Q ′) = |answers(Q ′) | − |answers(Q) |,

where answers(Q ′) is the set of answers of Q ′ (|answers(Q) | is al-
ways 1). We restrict relaxed queries to have a distance of no more
than α , which we set to 10. By pooling the results of all relaxed

Paper Session 1: Entities and Knowledge Bases ICTIR’17, October 1–4, 2017, Amsterdam, The Netherlands

15

queries, we form a set of candidate distractors. �e choice of dis-
tractor is based on how much di�culty we want the distractors to
introduce using our notion of distractor confusability.

6.2 Distractor Confusability
An MCQ can be made more or less di�cult by the choice of distrac-
tors. If one of the distractors is highly confusable with the answer
entity, the MCQ is di�cult. If none of the distractors is easy to
confuse with the answer entity, the MCQ is easy.

Based on this observation we regard a distractor as confusable if
it is likely to be the answer to the original question based on our
di�culty model. �is implies that if an entity is very likely to be
the answer to a question asking about a di�erent entity, this entity
pair must be similar. We can therefore de�ne confusability between
the question’s answer ea and a distractor entity edist as follows:

conf (Q, ea , edist) =

1 − |P (di� (Q, ea) = easy) − P (di� (Q, edist) = easy) |.

Since we can have more than one distractor in an MCQ, we
capture the above intuition regarding how multiple distractors
a�ect the overall di�culty of the question. We observe that an
MCQ is as confusing as its most confusing distractor and de�ne the
confusability of a distractor set Dist = {edist1, edist2, ...} as:

conf (Q, ea ,Dist) = max
edist ∈Dist

conf (Q, ea , edist).

Looking at the big picture, we relate the notion of confusabil-
ity in an MCQ with our earlier notion of di�culty by combining
di� (Q, ea) ∈ {easy,hard } and conf (Q, ea ,Dist) ∈ [0, 1]. An easy
question can be turned into a hard one when a very confusable
distractor is added, since the user has to distinguish between two
very similar entities. However, adding an easy distractor to a hard
question will not change its di�culty because even when both en-
tities are not similar to each other, the user still has to know which
entitiy is the correct answer.

7 EXPERIMENTAL EVALUATION
In the following section we evaluate our approach to knowledge
question generation from knowledge graphs. We perform two user
studies which focus on evaluating the di�culty model and our
distractor generation framework.

7.1 Human Assessment of Di�culty
An important motivation for automating di�culty assessment of
questions is the fact that it is di�cult to judge for the average
human what constitutes an easy or hard question. Beinborn et al.
[6] has already shown this result for language pro�ciency tests,
where language teachers were shown to be bad at predicting the
di�culty of questions when considering the actual performance
of students. We would like to observe if the same applies to our
se�ing. To create fair and informative tests, it is crucial that we are
able to correctly assess the di�culty of a question.

We start with the assumption that the creators of Jeopardy! are
good at automatically assessing question di�culty. Evidence for
this was discussed in Section 4, where we showed that there exists
a correlation between the monetary value of a question and the
likelihood of an incorrect answer by Jeopardy! contestants.

Table 2: Agreement between human evaluators (allmeasure-
ments are Fleiss’ Kappa)

eval2 eval3 majority
eval1 0.192 0.325 0.500
eval2 0.443 0.661
eval3 0.810

In our experiment we want to show how well the average human
can predict the di�culty of a question. To do so, we randomly
sampled 100 easy ($200) and 100 hard ($1000) questions from the
500 questions generated in Section 4 to maximize the discrepancy
in question di�culty. We then asked three human evaluators (eval1,
eval2, eval3) to annotate each of the 200 questions as easy or hard.
We then compared their answers with each other and with the
ground truth according to Jeopardy!.

Table 2 shows the agreement between each pair of human eval-
uators and the majority vote di�culty assessment using Fleiss’
Kappa [15]. When looking at pairwise agreement between evalua-
tors, it ranges from fair to moderate [24]. �is leads us to conclude
that it is hard for non-experts to properly judge question di�culty.

We also compared the majority vote of the evaluators on the di�-
culty of the questions with the ground truth provided by Jeopardy!.
�e result was agreement on 62.5% of questions. �is suggests that
there is a need to automate the task.

7.2 �estion Di�culty Classi�cation
We start by looking at the quality of our scheme for assigning dif-
�culty levels to questions. �e scheme is described in Section 4,
where the possible di�culty levels are D = {easy,hard }. We train
our logistic regression classi�er on 500 Jeopardy! questions an-
notated as described in Section 4. Using ten-fold cross validation,
our classi�er was able to correctly identify the di�culty levels of
questions with an accuracy of 66.4%.

To gain insight into how informative our features are, we per-
formed a feature ablation study where we look at the results for
all combinations of our features. For this part, we grouped our
features into three classes:
• SAL: “Salience” features as in Table 1, with additional log-trans-

formation of salience values to deal with long-tail entities.
• COH: “Coherence” features in Table 1.
• TYPE: “Per-coarse-semantic-type Salience” and “Answer Type”

features in Table 1.
Table 3 shows the results of this experiment. Each row corre-

sponds to a certain combination of features enabled or disabled.
Rows are shown in descending order of ten-fold cross validation
accuracy. It can be seen that best performance is achieved when
all of our features are integrated. From this observation it can be
reasoned that all features are necessary and give complementary
signals. �e bo�om row corresponds to a random classi�er.

7.3 User Study on Di�culty Estimation
In the following we perform an experiment on how well our clas-
si�er agrees with relative di�culty assessments of humans for
questions generated by our system. It is important to note that we

Paper Session 1: Entities and Knowledge Bases ICTIR’17, October 1–4, 2017, Amsterdam, The Netherlands

16

Table 3: Ablation study results for features introduced in
Section 4. Accuracy is based on ten-fold cross-validation.

SAL COH TYPE Accuracy
yes yes yes 66.4%
yes no yes 65.8%
yes yes no 62.6%
yes no no 62.2%
no no yes 60.0%
no yes yes 57.8%
no yes no 52.4%
no no no 50.0%

ask humans for relative di�culty assessments as opposed to abso-
lute di�culties, since we have shown in Section 7.1 that humans
are not very pro�cient in judging absolute di�culties.

For the user study we sampled a set of 50 entities with at least 5
non-type facts in Yago. For each entity, we generated a set of three
questions and presented them with the answer entity to human
annotators. �e annotators were asked to order these questions by
their relative di�culty and were allowed to skip a set of questions
about an entity if they were not familiar with the entity.

We then compared the correlation between the ranking given
by each of the human annotators and the output of our logistic
regression classi�er. For this we used Kendall’s τ , which ranges
from -1, for perfect disagreement, to 1, for perfect agreement.

A total of 13 evaluators took part in the study and evaluated 92.5
questions on average. Rankings produced by the di�culty classi�er
moderately agree with the human annotators with τ = 0.563. When
the τ -values for users are weighted by study participation, the
average rises to τ = 0.593. Here, each user’s contribution to the
�nal average depends on how many questions she evaluated to
avoid overly representing users that evaluated only few questions.

7.4 Distractor Confusability
When generating distractors for MCQs, our goal is to accurately
predict the confusability of a distractor given a question’s correct
answer. In Section 6.2 we presented our scheme for quantifying
distractor confusability, which we evaluate here.

For this experiment we automatically generate 10,000 MCQs.
Each question has three answer choices, which are the correct an-
swer and two distractors. We then restricted ourselves to 400 MCQs
whose distractor pair has the largest di�erence in confusability. �is
was done to maximize the probability that study participants can
discriminate more confusable from less confusable distractors.

We ran each MCQ through a crowdsourcing platform and asked
workers to judge which distractor is more confusing. Each MCQ
was judged by 5 workers so we could take the majority vote if judg-
ments where not unanimous. We compare this majority vote with
the result of our confusability estimator. Our estimator agreed with
the human annotations on 76% of the 400 MCQs. �is translates to
a Cohen’s κ of 0.521, indicating moderate agreement [11].

7.5 Examples
To demonstrate the viability of our approach we provide a few se-
lected examples in Table 4. �e table contains generated questions

as described in the paper for �ve topics. For each questionQ the ver-
balization is given, as well as the answer entity ea and the di�culty
of the question being easy [P (di f f (Q, ea) = easy)]. Furthermore,
we provide two distractors (edist1, edist2) with their corresponding
confusabilities [conf (Q, ea , edist1), conf (Q, ea , edist2)], where the
confusability of dist1 is smaller than the confusability of dist2 . Fur-
ther examples can be downloaded from h�p://bit.ly/kg-questions.

�e dataset was created by choosing for each topic the ten most
salient entities according to our salience measure presented in
Section 4. �estions were randomly generated with the constraint
that each question should contain at least three triple pa�erns.

8 RELATEDWORK
�ere has been work on knowledge question generation for testing
linguistic knowledge and reading comprehension. �e generation
of language pro�ciency tests has been tackled in several works [17,
28, 31]. Here, the focus is on generating cloze (�ll-in-the-blank)
tests. Beinborn et al. [6] presents an approach for predicting the
di�culty of answering such questions with multiple blanks using
SVMs trained on four classes of features that look at individual
blanks, their candidate answers, their dependence on other blanks,
and the overall question di�culty.

�estion generation for reading comprehension is aimed at
evaluating knowledge from text corpora. �is includes general
Wikipedia knowledge [7, 20] and specialized domain knowledge,
such as medical texts [2, 42]. While the above works focus on
generating a question from a single document, �estimator [18]
generates multiple choice questions from the textual Wikipedia
corpus by considering multiple documents related to a single topic
to produce a question. Work in this area has mostly taken the ap-
proach of overgeneration and ranking [20, 42]. Multiple questions
are generated for a given passage using rules. A learned model
ranks the questions in terms of “acceptability”, where acceptable
answers should be sensical, grammatical, and not obvious.

Recent work has started to look at the problem of generating
questions, including multiple choice ones, from KGs and ontolo-
gies [3, 33, 34, 37]. Strong motivations for studying this problem,
compared to question generation from text, are scenarios where
structured data is available at hand, and the ability to generate
deeper, structurally more complex questions. Our system is an
end-to-end solution for this problem over a large KG.

In Section 5 we presented a simple approach for query verbal-
ization that �ts our needs. �e query verbalization problem has
been tackled by Ngomo et al. for SPARQL [29], and Koutrika et al.
for SQL [23], with a focus on usability. Similar to our approach,
these earlier works take a template-based approach to verbalization,
which are widely used for natural language generation from logical
forms, such as SPARQL queries [22, 30].

Much recent work has focused on keyword search [8] and ques-
tion answering, rather than generation, from knowledge graphs
[5, 12, 26, 36, 40, 43], possibly in combination with textual data
[4, 32, 44]. �e value of knowledge graphs is that they return crisp
answers and allow for complex constraints to answer structurally
complex questions. Of course, question answering has a long his-
tory, with one of the major highlights being IBM’s Watson [14],

Paper Session 1: Entities and Knowledge Bases ICTIR’17, October 1–4, 2017, Amsterdam, The Netherlands

17

http://bit.ly/kg-questions

Table 4: Examples of generated questions for di�erent topics.

verbalize (Q) ea [P (dif f (Q, ea) = easy)] edist1[conf (Q, ea, edist1)] edist2[conf ((Q, ea, edist2)]
Topic: �eoretical Physicists

Which scientist is a citizen of Weimar Republic and
died in Princeton, New Jersey?

Albert Einstein[0.870] Aaron Lemonick[0.154] Grover Cleveland[0.963]

Which physicist was awarded the Nobel Prize in
Physics and Goethe Prize?

Max Planck[0.745] Richard Kuhn[0.683] Albert Schweitzer[1.000]

Topic: Internet Companies of the United States
Which company created Android (operating system)
and Network Security Services?

Google[0.576] Open Handset Alliance[0.504] AOL[0.914]

Which company is located in Washington (state) and
was created by the person Je� Bezos?

Amazon.com[0.243] Cdigix[0.760] Starbucks[0.991]

which won the Jeopardy! game show combining both structured
and unstructured sources for answering.

One important contribution of our work is an approach to com-
pute the di�culty of questions generated. �is topic has received
a�ention lately in community question answering [25, 41], by using
a competition-based approach that tries to capture how much skill
a question requires for answering. �ere has also been work on
estimating query di�culty in the context of information retrieval
[10, 45] to learn an estimator that predicts the expected precision
of the query by analyzing the overlap between the results of the
full query and the results of its sub-queries.

9 CONCLUSION
We proposed a novel end-to-end approach to the problem of gener-
ating quiz-style knowledge questions from knowledge graphs. Our
approach addresses the challenges inherent to this problem, most
importantly estimating the di�culty of generated questions. To this
end, we engineer suitable features and train a model of question
di�culty on historical data from the Jeopardy! quiz show, which is
shown to outperform humans on this di�cult task.

REFERENCES
[1] J! Archive. h�p://j-archive.com.
[2] M. Agarwal and P. Mannem. Automatic gap-�ll question generation from text

books. In BEA, 2011.
[3] T. Alsubait et al. Generating multiple choice questions from ontologies: Lessons

learnt. In OWLED, 2014.
[4] H. Bast et al. Semantic Search on Text and Knowledge Bases. Foundations and

Trends in IR, 10(2-3), 2016.
[5] H. Bast and E. Haussmann. More Accurate �estion Answering on Freebase. In

CIKM, 2015.
[6] L. Beinborn et al. Predicting the Di�culty of Language Pro�ciency Tests. TACL,

2, 2014.
[7] A. S. Bhatia et al. Automatic generation of multiple choice questions using

wikipedia. In PReMI, 2013.
[8] R. Blanco et al. E�ective and e�cient entity search in RDF data. In ISWC, 2011.
[9] K. D. Bollacker et al. Freebase: a Collaboratively Created Graph Database for

Structuring Human Knowledge. In SIGMOD, 2008.
[10] D. Carmel and E. Yom-Tov. Estimating the �ery Di�culty for Information

Retrieval. Morgan & Claypool Publishers, 2010.
[11] J. Cohen. A Coe�cient of Agreement for Nominal Scales. Educational and

Psychological Measurement, 20(1):37, 1960.
[12] W. Cui et al. KBQA: an Online Template Based �estion Answering System

over Freebase. In IJCAI, 2016.
[13] C. Fellbaum, editor. WordNet: an Electronic Lexical Database. MIT Press, 1998.
[14] D. A. Ferrucci. Introduction to ”this is watson”. IBM Journal of Research and

Development, 2012.
[15] J. L. Fleiss. Measuring Nominal Scale Agreement among Many Raters. Psycho-

logical Bulletin, 1971.

[16] E. Gabrilovich et al. FACC1: Freebase annotation of ClueWeb corpora, Version 1,
2013.

[17] D. M. Gates. How to Generate Cloze �estions from De�nitions: A Syntactic
Approach. In AAAI, 2011.

[18] Q. Guo et al. �estimator: Generating Knowledge Assessments for Arbitrary
Topics. In IJCAI, 2016.

[19] M. A. Hearst. Automatic Acquisition of Hyponyms from Large Text Corpora. In
COLING, 1992.

[20] M. Heilman and N. A. Smith. �estion Generation via Overgenerating Transfor-
mations and Ranking. Technical report, 2009.

[21] J. Ho�art et al. Robust Disambiguation of Named Entities in Text. In EMNLP,
2011.

[22] N. Indurkhya et al., editors. Handbook of Natural Language Processing. Chapman
and Hall/CRC, 2010.

[23] G. Koutrika et al. Explaining Structured �eries in Natural Language. In ICDE,
2010.

[24] J. R. Landis and G. G. Koch. �e Measurement of Observer Agreement for
Categorical Data. Biometrics, Vol. 33, 1977.

[25] J. Liu et al. �estion di�culty estimation in community question answering
services. In EMNLP, 2013.

[26] V. López et al. Scaling up question-answering to linked data. In EKAW, 2010.
[27] M. Mintz et al. Distant supervision for relation extraction without labeled data.

In ACL, 2009.
[28] A. Narendra et al. Automatic Cloze-�estions Generation. In RANLP, 2013.
[29] A.-C. Ngonga Ngomo et al. Sorry, I Don’T Speak SPARQL: Translating SPARQL

�eries into Natural Language. In WWW, 2013.
[30] E. Reiter et al. Building Natural Language Generation Systems. Cambridge

University Press, 2000.
[31] K. Sakaguchi et al. Discriminative Approach to Fill-in-the-Blank �iz Generation

for Language Learners. In ACL, 2013.
[32] D. Savenkov and E. Agichtein. When a knowledge base is not enough: �estion

answering over knowledge bases with external text data. In SIGIR, 2016.
[33] I. V. Serban et al. Generating factoid questions with recurrent neural networks:

�e 30m factoid question-answer corpus. In ACL, 2016.
[34] D. Seyler et al. Generating quiz questions from knowledge graphs. In WWW,

2015.
[35] D. Seyler et al. Automated question generation for quality control in human

computation tasks. In WebSci, 2016.
[36] S. Shekarpour et al. �estion answering on interlinked data. In WWW, 2013.
[37] L. Song and L. Zhao. Domain-speci�c question generation from a knowledge

base. arXiv, 2016.
[38] F. M. Suchanek et al. Yago: A Core of Semantic Knowledge. In WWW, 2007.
[39] F. M. Suchanek et al. Yago2s: Modular high-quality information extraction with

an application to �ight planning. In BTW, volume 214, 2013.
[40] C. Unger et al. Template-based question answering over RDF data. In WWW,

2012.
[41] Q. Wang et al. A regularized competition model for question di�culty estimation

in community question answering services. In EMNLP, 2014.
[42] W. Wang et al. Automatic question generation for learning evaluation in medicine.

In ICWL, 2007.
[43] K. Xu et al. What Is the Longest River in the USA? Semantic Parsing for Aggre-

gation �estions. In AAAI, 2015.
[44] P. Yin et al. Answering �estions with Complex Semantic Constraints on Open

Knowledge Bases. In CIKM, 2015.
[45] E. Yom-Tov et al. Learning to estimate query di�culty: including applications to

missing content detection and distributed information retrieval. In SIGIR, 2005.

Paper Session 1: Entities and Knowledge Bases ICTIR’17, October 1–4, 2017, Amsterdam, The Netherlands

18

http://j-archive.com

	Abstract
	1 Introduction
	2 Preliminaries & Problem Statement
	3 Query Generation
	3.1 Answer Type Selection
	3.2 Triple Pattern Generation

	4 Difficulty Estimation
	4.1 Preparing Training Data
	4.2 Difficulty Classifier

	5 Query Verbalization
	5.1 Verbalization Template
	5.2 Verbalization Lexicons

	6 multiple-choice questions
	6.1 Distractor Generation
	6.2 Distractor Confusability

	7 Experimental Evaluation
	7.1 Human Assessment of Difficulty
	7.2 Question Difficulty Classification
	7.3 User Study on Difficulty Estimation
	7.4 Distractor Confusability
	7.5 Examples

	8 Related Work
	9 Conclusion
	References

